Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- !pip install keras -q
- !pip install tensorflow -q
- from keras.datasets import fashion_mnist
- from keras.layers import Dense, Input
- from keras.models import Sequential
- import numpy as np
- def load_train():
- (features_train, target_train), _ = fashion_mnist.load_data()
- features_train = features_train.reshape(features_train.shape[0], 28 * 28) / 255.
- return features_train, target_train
- def create_model(input_shape):
- model = Sequential()
- model.add(Input(shape=input_shape))
- model.add(Dense(64, activation='relu'))
- model.add(Dense(32, activation='softmax'))
- model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['acc'])
- return model
- def train_model(model, train_data, batch_size=32, epochs=10):
- features_train, target_train = train_data
- model.fit(features_train, target_train, batch_size=batch_size, epochs=epochs, verbose=2, shuffle=True)
- return model
- features_train, target_train = load_train()
- input_shape = (28 * 28,)
- model = create_model(input_shape)
- train_data = (features_train, target_train)
- trained_model = train_model(model, train_data)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement