Advertisement
gagarin_1982

Untitled

Jan 17th, 2025
50
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.12 KB | None | 0 0
  1. !pip install keras -q
  2. !pip install tensorflow -q
  3.  
  4. from keras.datasets import fashion_mnist
  5. from keras.layers import Dense, Input
  6. from keras.models import Sequential
  7. import numpy as np
  8.  
  9. def load_train():
  10. (features_train, target_train), _ = fashion_mnist.load_data()
  11. features_train = features_train.reshape(features_train.shape[0], 28 * 28) / 255.
  12. return features_train, target_train
  13.  
  14. def create_model(input_shape):
  15. model = Sequential()
  16. model.add(Input(shape=input_shape))
  17. model.add(Dense(64, activation='relu'))
  18. model.add(Dense(32, activation='softmax'))
  19. model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['acc'])
  20. return model
  21.  
  22. def train_model(model, train_data, batch_size=32, epochs=10):
  23. features_train, target_train = train_data
  24. model.fit(features_train, target_train, batch_size=batch_size, epochs=epochs, verbose=2, shuffle=True)
  25. return model
  26.  
  27. features_train, target_train = load_train()
  28. input_shape = (28 * 28,)
  29. model = create_model(input_shape)
  30. train_data = (features_train, target_train)
  31. trained_model = train_model(model, train_data)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement