Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- > n = 100; a = 1; b = 1; tau = 100
- > z = rnorm(n)
- > eta = a + b*z
- > scale = exp(rnorm(n))
- > prec = scale*tau
- > y = rnorm(n, mean = eta, sd = 1/sqrt(prec))
- > data = list(y=y, z=z)
- > formula = y ~ 1+z
- > result = inla(formula, family = "gaussian", data = data,
- + verbose = TRUE)
- Read ntt 16 1 with max.threads 16
- Found num.threads = 16:1 max_threads = 16
- 39a87469400fa169507c508366eca6ae7588cfdf - Wed Jun 19 21:58:47 2024 +0900
- Report bugs to <help@r-inla.org>
- Set reordering to id=[0] and name=[default]
- Process file[/tmp/RtmpfSOSbn/file585054fa8b4a/Model.ini] threads[16] max.threads[16] blas_threads[1] nested[16:1]
- inla_build...
- number of sections=[10]
- parse section=[0] name=[INLA.libR] type=[LIBR]
- inla_parse_libR...
- section[INLA.libR]
- R_HOME=[/usr/local/lib64/R]
- parse section=[7] name=[INLA.Expert] type=[EXPERT]
- inla_parse_expert...
- section[INLA.Expert]
- disable.gaussian.check=[0]
- Measure dot.product.gain=[No]
- cpo.manual=[0]
- jp.file=[(null)]
- jp.model=[(null)]
- parse section=[1] name=[INLA.Model] type=[PROBLEM]
- inla_parse_problem...
- name=[INLA.Model]
- R-INLA version = [24.06.19]
- R-INLA build date = [19893]
- Build tag = [devel]
- System memory = [31.0Gb]
- Cores = (Physical= 16, Logical= 16)
- 'char' is signed
- BUFSIZ is 8192
- openmp.strategy=[default]
- pardiso-library installed and working? = [yes]
- smtp = [pardiso]
- strategy = [pardiso]
- store results in directory=[/tmp/RtmpfSOSbn/file585054fa8b4a/results.files]
- output:
- gcpo=[0]
- num.level.sets=[-1]
- size.max=[32]
- strategy=[Posterior]
- correct.hyperpar=[1]
- epsilon=[0.005]
- prior.diagonal=[0.0001]
- keep=[]
- remove.fixed=[1]
- remove=[]
- cpo=[0]
- po=[0]
- dic=[0]
- kld=[1]
- mlik=[1]
- q=[0]
- graph=[0]
- hyperparameters=[1]
- config=[0]
- config.lite=[0]
- likelihood.info=[0]
- internal.opt=[1]
- save.memory=[0]
- summary=[1]
- return.marginals=[1]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- parse section=[3] name=[Predictor] type=[PREDICTOR]
- inla_parse_predictor ...
- section=[Predictor]
- dir=[predictor]
- PRIOR->name=[loggamma]
- hyperid=[53001|Predictor]
- PRIOR->from_theta=[function (x) <<NEWLINE>>exp(x)]
- PRIOR->to_theta = [function (x) <<NEWLINE>>log(x)]
- PRIOR->PARAMETERS=[1, 1e-05]
- initialise log_precision[13.8155]
- fixed=[1]
- user.scale=[1]
- n=[100]
- m=[0]
- ndata=[100]
- compute=[1]
- read offsets from file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58504034defb]
- read n=[200] entries from file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58504034defb]
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58504034defb] 0/100 (idx,y) = (0, 0)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58504034defb] 1/100 (idx,y) = (1, 0)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58504034defb] 2/100 (idx,y) = (2, 0)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58504034defb] 3/100 (idx,y) = (3, 0)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58504034defb] 4/100 (idx,y) = (4, 0)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58504034defb] 5/100 (idx,y) = (5, 0)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58504034defb] 6/100 (idx,y) = (6, 0)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58504034defb] 7/100 (idx,y) = (7, 0)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58504034defb] 8/100 (idx,y) = (8, 0)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58504034defb] 9/100 (idx,y) = (9, 0)
- A=[(null)]
- Aext=[(null)]
- AextPrecision=[1e+08]
- output:
- summary=[1]
- return.marginals=[1]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- parse section=[2] name=[INLA.Data1] type=[DATA]
- inla_parse_data [section 1]...
- tag=[INLA.Data1]
- family=[GAUSSIAN]
- likelihood=[GAUSSIAN]
- file->name=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file585074b6272f]
- file->name=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850722482f1]
- file->name=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506e197272]
- file->name=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file585028bd4b9e]
- read n=[300] entries from file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file585074b6272f]
- 0/100 (idx,a,y,d) = (0, 1, 0.539796, 1)
- 1/100 (idx,a,y,d) = (1, 1, 1.06761, 1)
- 2/100 (idx,a,y,d) = (2, 1, 1.43897, 1)
- 3/100 (idx,a,y,d) = (3, 1, 0.151292, 1)
- 4/100 (idx,a,y,d) = (4, 1, 1.32971, 1)
- 5/100 (idx,a,y,d) = (5, 1, 2.9832, 1)
- 6/100 (idx,a,y,d) = (6, 1, 1.28958, 1)
- 7/100 (idx,a,y,d) = (7, 1, -0.552891, 1)
- 8/100 (idx,a,y,d) = (8, 1, -0.735916, 1)
- 9/100 (idx,a,y,d) = (9, 1, -0.0893465, 1)
- likelihood.variant=[0]
- initialise log_precision[4]
- fixed0=[0]
- PRIOR0->name=[loggamma]
- hyperid=[65001|INLA.Data1]
- PRIOR0->from_theta=[function (x) <<NEWLINE>>exp(x)]
- PRIOR0->to_theta = [function (x) <<NEWLINE>>log(x)]
- PRIOR0->PARAMETERS0=[1, 5e-05]
- initialise log_precision offset[72.0873]
- fixed1=[1]
- PRIOR1->name=[none]
- hyperid=[65002|INLA.Data1]
- PRIOR1->from_theta=[function (x) <<NEWLINE>>exp(x)]
- PRIOR1->to_theta = [function (x) <<NEWLINE>>log(x)]
- PRIOR1->PARAMETERS1=[]
- Link model [IDENTITY]
- Link order [-1]
- Link variant [-1]
- Link a [1]
- Link ntheta [0]
- mix.use[0]
- section=[4] name=[(Intercept)] type=[LINEAR]
- inla_parse_linear...
- section[(Intercept)]
- dir=[fixed.effect00000001]
- file for covariates=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850123401c2]
- read n=[200] entries from file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850123401c2]
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850123401c2] 0/100 (idx,y) = (0, 1)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850123401c2] 1/100 (idx,y) = (1, 1)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850123401c2] 2/100 (idx,y) = (2, 1)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850123401c2] 3/100 (idx,y) = (3, 1)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850123401c2] 4/100 (idx,y) = (4, 1)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850123401c2] 5/100 (idx,y) = (5, 1)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850123401c2] 6/100 (idx,y) = (6, 1)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850123401c2] 7/100 (idx,y) = (7, 1)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850123401c2] 8/100 (idx,y) = (8, 1)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file5850123401c2] 9/100 (idx,y) = (9, 1)
- prior mean=[0]
- prior precision=[0]
- compute=[1]
- output:
- summary=[1]
- return.marginals=[1]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- section=[5] name=[z] type=[LINEAR]
- inla_parse_linear...
- section[z]
- dir=[fixed.effect00000002]
- file for covariates=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506922bbd0]
- read n=[200] entries from file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506922bbd0]
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506922bbd0] 0/100 (idx,y) = (0, -0.466793)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506922bbd0] 1/100 (idx,y) = (1, 0.169768)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506922bbd0] 2/100 (idx,y) = (2, 0.453294)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506922bbd0] 3/100 (idx,y) = (3, -0.850103)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506922bbd0] 4/100 (idx,y) = (4, 0.27291)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506922bbd0] 5/100 (idx,y) = (5, 2.04257)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506922bbd0] 6/100 (idx,y) = (6, 0.200488)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506922bbd0] 7/100 (idx,y) = (7, -1.545)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506922bbd0] 8/100 (idx,y) = (8, -1.81745)
- file=[/tmp/RtmpfSOSbn/file585054fa8b4a/data.files/file58506922bbd0] 9/100 (idx,y) = (9, -1.27583)
- prior mean=[0]
- prior precision=[0.001]
- compute=[1]
- output:
- summary=[1]
- return.marginals=[1]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- parse section=[9] name=[INLA.pardiso] type=[PARDISO]
- inla_parse_pardiso...
- section[INLA.pardiso]
- verbose[0]
- debug[0]
- parallel.reordering[1]
- nrhs[-1]
- parse section=[8] name=[INLA.lp.scale] type=[LP.SCALE]
- inla_parse_lp_scale...
- section[INLA.lp.scale]
- Index table: number of entries[3], total length[102]
- tag start-index length
- Predictor 0 100
- (Intercept) 100 1
- z 101 1
- List of hyperparameters:
- theta[0] = [Log precision for the Gaussian observations]
- parse section=[6] name=[INLA.Parameters] type=[INLA]
- inla_parse_INLA...
- section[INLA.Parameters]
- lincomb.derived.correlation.matrix = [No]
- global_node.factor = 2.000
- global_node.degree = 2147483647
- reordering = -1
- constr.marginal.diagonal = 1.49e-08
- Contents of ai_param 0x5cc51e7f3420
- Optimiser: DEFAULT METHOD
- Option for GSL-BFGS2: tol = 0.1
- Option for GSL-BFGS2: step_size = 1
- Option for GSL-BFGS2: epsx = 0.001
- Option for GSL-BFGS2: epsf = 0.002
- Option for GSL-BFGS2: epsg = 0.005
- Restart: 0
- Optimise: try to be smart: Yes
- Optimise: use directions: Yes
- Mode restart: Yes
- Mode fixed: No
- Mode use_mode: No
- parallel linesearch [0]
- Gaussian approximation:
- tolerance_func = 0.002
- tolerance_step = 5e-06
- optpar_fp = 0
- optpar_nr_step_factor = -0.1
- Gaussian data: Yes
- Strategy: Use a mean-skew corrected Gaussian by fitting a Skew-Normal
- Fast mode: On
- Use linear approximation to log(|Q +c|)? Yes
- Method: Compute the derivative exact
- Parameters for improved approximations
- Number of points evaluate: 9
- Step length to compute derivatives numerically: 0.0001
- Stencil to compute derivatives numerically: 5
- Cutoff value to construct local neigborhood: 0.0001
- Log calculations: On
- Log calculated marginal for the hyperparameters: On
- Integration strategy: Automatic (GRID for dim(theta)=1 and 2 and otherwise CCD)
- f0 (CCD only): 1.100
- dz (GRID only): 0.750
- Adjust weights (GRID only): On
- Difference in log-density limit (GRID only): 6.000
- Skip configurations with (presumed) small density (GRID only): On
- Gradient is computed using Central difference with step-length 0.005000
- Hessian is computed using Central difference with step-length 0.070711
- Hessian matrix is forced to be a diagonal matrix? [No]
- Compute effective number of parameters? [Yes]
- Perform a Monte Carlo error-test? [No]
- Interpolator [Auto]
- CPO required diff in log-density [3]
- Stupid search mode:
- Status [On]
- Max iter [1000]
- Factor [1.05]
- Numerical integration of hyperparameters:
- Maximum number of function evaluations [100000]
- Relative error ....................... [1e-05]
- Absolute error ....................... [1e-06]
- To stabilise the numerical optimisation:
- Minimum value of the -Hessian [-inf]
- Strategy for the linear term [Keep]
- CPO manual calculation[No]
- VB correction is [Enabled]
- strategy = [mean]
- verbose = [Yes]
- f_enable_limit_mean = [30]
- f_enable_limit_var = [25]
- f_enable_limit_mean_max = [1024]
- f_enable_limit_variance_max = [768]
- iter_max = [25]
- emergency = [25.00]
- hessian_update = [2]
- hessian_strategy = [full]
- Misc options:
- Hessian correct skewness only [1]
- inla_build: check for unused entries in[/tmp/RtmpfSOSbn/file585054fa8b4a/Model.ini]
- inla_INLA_preopt_experimental...
- Mode....................... [Compact]
- Setup...................... [0.01s]
- Sparse-matrix library...... [pardiso]
- OpenMP strategy............ [pardiso]
- num.threads................ [16:1]
- blas.num.threads........... [1]
- Density-strategy........... [High]
- Size of graph.............. [2]
- Number of constraints...... [0]
- Optimizing sort2_id........ [304]
- Optimizing sort2_dd........ [376]
- Optimizing Qx-strategy..... serial[0.306] parallel [0.694] choose[serial]
- Optimizing pred-strategy... plain [0.667] data-rich[0.333] choose[data-rich]
- List of hyperparameters:
- theta[0] = [Log precision for the Gaussian observations]
- Compute initial values...
- Iter[0] RMS(err) = 1.000, update with step-size = 0.971
- Iter[1] RMS(err) = 0.102, update with step-size = 1.054
- Iter[2] RMS(err) = 1.000, update with step-size = 0.026
- Initial values computed in 0.0007 seconds
- x[0] = 0.8211
- x[1] = 0.8242
- x[0] = 0.8211
- x[1] = 0.8242
- Optimise using DEFAULT METHOD
- Smart optimise part I: estimate gradient using forward differences
- malloc(): invalid size (unsorted)
- munmap_chunk(): invalid pointer
- *** inla.core.safe: The inla program failed, but will rerun in case better initial values may help. try=1/1
- Read ntt 16 1 with max.threads 16
- Found num.threads = 16:1 max_threads = 16
- 39a87469400fa169507c508366eca6ae7588cfdf - Wed Jun 19 21:58:47 2024 +0900
- Report bugs to <help@r-inla.org>
- Set reordering to id=[0] and name=[default]
- Process file[/tmp/RtmpfSOSbn/file58505f4ea2f0/Model.ini] threads[16] max.threads[16] blas_threads[1] nested[16:1]
- inla_build...
- number of sections=[10]
- parse section=[0] name=[INLA.libR] type=[LIBR]
- inla_parse_libR...
- section[INLA.libR]
- R_HOME=[/usr/local/lib64/R]
- parse section=[7] name=[INLA.Expert] type=[EXPERT]
- inla_parse_expert...
- section[INLA.Expert]
- disable.gaussian.check=[0]
- Measure dot.product.gain=[No]
- cpo.manual=[0]
- jp.file=[(null)]
- jp.model=[(null)]
- parse section=[1] name=[INLA.Model] type=[PROBLEM]
- inla_parse_problem...
- name=[INLA.Model]
- R-INLA version = [24.06.19]
- R-INLA build date = [19893]
- Build tag = [devel]
- System memory = [31.0Gb]
- Cores = (Physical= 16, Logical= 16)
- 'char' is signed
- BUFSIZ is 8192
- openmp.strategy=[default]
- pardiso-library installed and working? = [yes]
- smtp = [pardiso]
- strategy = [pardiso]
- store results in directory=[/tmp/RtmpfSOSbn/file58505f4ea2f0/results.files]
- output:
- gcpo=[0]
- num.level.sets=[-1]
- size.max=[32]
- strategy=[Posterior]
- correct.hyperpar=[1]
- epsilon=[0.005]
- prior.diagonal=[0.0001]
- keep=[]
- remove.fixed=[1]
- remove=[]
- cpo=[0]
- po=[0]
- dic=[0]
- kld=[1]
- mlik=[1]
- q=[0]
- graph=[0]
- hyperparameters=[1]
- config=[0]
- config.lite=[0]
- likelihood.info=[0]
- internal.opt=[1]
- save.memory=[0]
- summary=[1]
- return.marginals=[0]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- parse section=[3] name=[Predictor] type=[PREDICTOR]
- inla_parse_predictor ...
- section=[Predictor]
- dir=[predictor]
- PRIOR->name=[loggamma]
- hyperid=[53001|Predictor]
- PRIOR->from_theta=[function (x) <<NEWLINE>>exp(x)]
- PRIOR->to_theta = [function (x) <<NEWLINE>>log(x)]
- PRIOR->PARAMETERS=[1, 1e-05]
- initialise log_precision[13.8155]
- fixed=[1]
- user.scale=[1]
- n=[100]
- m=[0]
- ndata=[100]
- compute=[0]
- read offsets from file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file5850628aaedc]
- read n=[200] entries from file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file5850628aaedc]
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file5850628aaedc] 0/100 (idx,y) = (0, 0)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file5850628aaedc] 1/100 (idx,y) = (1, 0)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file5850628aaedc] 2/100 (idx,y) = (2, 0)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file5850628aaedc] 3/100 (idx,y) = (3, 0)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file5850628aaedc] 4/100 (idx,y) = (4, 0)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file5850628aaedc] 5/100 (idx,y) = (5, 0)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file5850628aaedc] 6/100 (idx,y) = (6, 0)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file5850628aaedc] 7/100 (idx,y) = (7, 0)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file5850628aaedc] 8/100 (idx,y) = (8, 0)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file5850628aaedc] 9/100 (idx,y) = (9, 0)
- A=[(null)]
- Aext=[(null)]
- AextPrecision=[1e+08]
- output:
- summary=[1]
- return.marginals=[0]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- parse section=[2] name=[INLA.Data1] type=[DATA]
- inla_parse_data [section 1]...
- tag=[INLA.Data1]
- family=[GAUSSIAN]
- likelihood=[GAUSSIAN]
- file->name=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file585051266a64]
- file->name=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file585031257209]
- file->name=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506316efdb]
- file->name=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58501f9a2b48]
- read n=[300] entries from file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file585051266a64]
- 0/100 (idx,a,y,d) = (0, 1, 0.539796, 1)
- 1/100 (idx,a,y,d) = (1, 1, 1.06761, 1)
- 2/100 (idx,a,y,d) = (2, 1, 1.43897, 1)
- 3/100 (idx,a,y,d) = (3, 1, 0.151292, 1)
- 4/100 (idx,a,y,d) = (4, 1, 1.32971, 1)
- 5/100 (idx,a,y,d) = (5, 1, 2.9832, 1)
- 6/100 (idx,a,y,d) = (6, 1, 1.28958, 1)
- 7/100 (idx,a,y,d) = (7, 1, -0.552891, 1)
- 8/100 (idx,a,y,d) = (8, 1, -0.735916, 1)
- 9/100 (idx,a,y,d) = (9, 1, -0.0893465, 1)
- likelihood.variant=[0]
- initialise log_precision[4]
- fixed0=[0]
- PRIOR0->name=[loggamma]
- hyperid=[65001|INLA.Data1]
- PRIOR0->from_theta=[function (x) <<NEWLINE>>exp(x)]
- PRIOR0->to_theta = [function (x) <<NEWLINE>>log(x)]
- PRIOR0->PARAMETERS0=[1, 5e-05]
- initialise log_precision offset[72.0873]
- fixed1=[1]
- PRIOR1->name=[none]
- hyperid=[65002|INLA.Data1]
- PRIOR1->from_theta=[function (x) <<NEWLINE>>exp(x)]
- PRIOR1->to_theta = [function (x) <<NEWLINE>>log(x)]
- PRIOR1->PARAMETERS1=[]
- Link model [IDENTITY]
- Link order [-1]
- Link variant [-1]
- Link a [1]
- Link ntheta [0]
- mix.use[0]
- section=[4] name=[(Intercept)] type=[LINEAR]
- inla_parse_linear...
- section[(Intercept)]
- dir=[fixed.effect00000001]
- file for covariates=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506f7bf411]
- read n=[200] entries from file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506f7bf411]
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506f7bf411] 0/100 (idx,y) = (0, 1)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506f7bf411] 1/100 (idx,y) = (1, 1)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506f7bf411] 2/100 (idx,y) = (2, 1)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506f7bf411] 3/100 (idx,y) = (3, 1)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506f7bf411] 4/100 (idx,y) = (4, 1)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506f7bf411] 5/100 (idx,y) = (5, 1)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506f7bf411] 6/100 (idx,y) = (6, 1)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506f7bf411] 7/100 (idx,y) = (7, 1)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506f7bf411] 8/100 (idx,y) = (8, 1)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506f7bf411] 9/100 (idx,y) = (9, 1)
- prior mean=[0]
- prior precision=[0]
- compute=[1]
- output:
- summary=[1]
- return.marginals=[0]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- section=[5] name=[z] type=[LINEAR]
- inla_parse_linear...
- section[z]
- dir=[fixed.effect00000002]
- file for covariates=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506fee3162]
- read n=[200] entries from file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506fee3162]
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506fee3162] 0/100 (idx,y) = (0, -0.466793)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506fee3162] 1/100 (idx,y) = (1, 0.169768)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506fee3162] 2/100 (idx,y) = (2, 0.453294)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506fee3162] 3/100 (idx,y) = (3, -0.850103)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506fee3162] 4/100 (idx,y) = (4, 0.27291)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506fee3162] 5/100 (idx,y) = (5, 2.04257)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506fee3162] 6/100 (idx,y) = (6, 0.200488)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506fee3162] 7/100 (idx,y) = (7, -1.545)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506fee3162] 8/100 (idx,y) = (8, -1.81745)
- file=[/tmp/RtmpfSOSbn/file58505f4ea2f0/data.files/file58506fee3162] 9/100 (idx,y) = (9, -1.27583)
- prior mean=[0]
- prior precision=[0.001]
- compute=[1]
- output:
- summary=[1]
- return.marginals=[0]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- parse section=[9] name=[INLA.pardiso] type=[PARDISO]
- inla_parse_pardiso...
- section[INLA.pardiso]
- verbose[0]
- debug[0]
- parallel.reordering[1]
- nrhs[-1]
- parse section=[8] name=[INLA.lp.scale] type=[LP.SCALE]
- inla_parse_lp_scale...
- section[INLA.lp.scale]
- Index table: number of entries[3], total length[102]
- tag start-index length
- Predictor 0 100
- (Intercept) 100 1
- z 101 1
- List of hyperparameters:
- theta[0] = [Log precision for the Gaussian observations]
- parse section=[6] name=[INLA.Parameters] type=[INLA]
- inla_parse_INLA...
- section[INLA.Parameters]
- lincomb.derived.correlation.matrix = [No]
- global_node.factor = 2.000
- global_node.degree = 2147483647
- reordering = -1
- constr.marginal.diagonal = 1.49e-08
- Contents of ai_param 0x580c382fb420
- Optimiser: DEFAULT METHOD
- Option for GSL-BFGS2: tol = 0.1
- Option for GSL-BFGS2: step_size = 1
- Option for GSL-BFGS2: epsx = 0.002
- Option for GSL-BFGS2: epsf = 0.004
- Option for GSL-BFGS2: epsg = 0.01
- Restart: 0
- Optimise: try to be smart: No
- Optimise: use directions: Yes
- Mode restart: Yes
- Mode fixed: No
- Mode use_mode: No
- parallel linesearch [0]
- Gaussian approximation:
- tolerance_func = 0.004
- tolerance_step = 1e-05
- optpar_fp = 0
- optpar_nr_step_factor = -0.1
- Gaussian data: Yes
- Strategy: Use the Gaussian approximation
- Fast mode: On
- Use linear approximation to log(|Q +c|)? Yes
- Method: Compute the derivative exact
- Parameters for improved approximations
- Number of points evaluate: 9
- Step length to compute derivatives numerically: 0.0001
- Stencil to compute derivatives numerically: 5
- Cutoff value to construct local neigborhood: 0.0001
- Log calculations: On
- Log calculated marginal for the hyperparameters: On
- Integration strategy: Use only the modal configuration (EMPIRICAL_BAYES)
- f0 (CCD only): 1.100
- dz (GRID only): 0.750
- Adjust weights (GRID only): On
- Difference in log-density limit (GRID only): 6.000
- Skip configurations with (presumed) small density (GRID only): On
- Gradient is computed using Central difference with step-length 0.005000
- Hessian is computed using Central difference with step-length 0.070711
- Hessian matrix is forced to be a diagonal matrix? [Yes]
- Compute effective number of parameters? [Yes]
- Perform a Monte Carlo error-test? [No]
- Interpolator [Auto]
- CPO required diff in log-density [3]
- Stupid search mode:
- Status [On]
- Max iter [1000]
- Factor [1.05]
- Numerical integration of hyperparameters:
- Maximum number of function evaluations [100000]
- Relative error ....................... [1e-05]
- Absolute error ....................... [1e-06]
- To stabilise the numerical optimisation:
- Minimum value of the -Hessian [inf]
- Strategy for the linear term [Keep]
- CPO manual calculation[No]
- VB-correction is [Disabled]
- Misc options:
- Hessian correct skewness only [1]
- inla_build: check for unused entries in[/tmp/RtmpfSOSbn/file58505f4ea2f0/Model.ini]
- inla_INLA_preopt_experimental...
- Mode....................... [Compact]
- Setup...................... [0.01s]
- Sparse-matrix library...... [pardiso]
- OpenMP strategy............ [pardiso]
- num.threads................ [16:1]
- blas.num.threads........... [1]
- Density-strategy........... [High]
- Size of graph.............. [2]
- Number of constraints...... [0]
- Optimizing sort2_id........ [310]
- Optimizing sort2_dd........ [381]
- Optimizing Qx-strategy..... serial[0.304] parallel [0.696] choose[serial]
- Optimizing pred-strategy... plain [0.696] data-rich[0.304] choose[data-rich]
- List of hyperparameters:
- theta[0] = [Log precision for the Gaussian observations]
- Compute initial values...
- Iter[0] RMS(err) = 1.000, update with step-size = 0.971
- Iter[1] RMS(err) = 0.102, update with step-size = 1.054
- Iter[2] RMS(err) = 1.000, update with step-size = 0.026
- Initial values computed in 0.0006 seconds
- x[0] = 0.8211
- x[1] = 0.8242
- x[0] = 0.8211
- x[1] = 0.8242
- Optimise using DEFAULT METHOD
- malloc(): invalid size (unsorted)
- munmap_chunk(): invalid pointer
- Error in inla.core.safe(formula = formula, family = family, contrasts = contrasts, :
- The inla-program exited with an error. Unless you interupted it yourself, please rerun with verbose=TRUE and check the output carefully.
- If this does not help, please contact the developers at <help@r-inla.org>.
- The inla program failed and the maximum number of tries has been reached.
- >
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement