Advertisement
GamerBhai02

DS Exp 7

May 14th, 2025 (edited)
89
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.76 KB | Source Code | 0 0
  1. import numpy as np
  2. import pandas as pd
  3. from sklearn.datasets import load_breast_cancer
  4. data = load_breast_cancer()
  5. data_df = pd.DataFrame(data=data.data,columns=data.feature_names)
  6. from sklearn.preprocessing import StandardScaler
  7. standardized = StandardScaler()
  8. standardized.fit(data_df)
  9. scaled_data = standardized.transform(data_df)
  10. print(scaled_data)
  11. from sklearn.decomposition import PCA
  12. pca = PCA(n_components=2)
  13. pca.fit(scaled_data)
  14. x_pca = pca.transform(scaled_data)
  15. import matplotlib.pyplot as plt
  16. import seaborn as sns
  17. %matplotlib inline
  18. fig = plt.figure(figsize=(8,6))
  19. ax = fig.add_subplot(1,1,1)
  20. ax.set_xlabel("Principal component 1", fontsize=15)
  21. ax.set_ylabel("Principal component 2", fontsize=15)
  22. ax.set_title("2 Component PCA", fontsize=20)
  23. ax.scatter(x_pca[:,0], x_pca[:,1])
  24. plt.show()
  25.  
  26.  
  27. from sklearn.model_selection import cross_val_score
  28. from sklearn.decomposition import PCA
  29. from sklearn.neighbors import KNeighborsClassifier
  30. from sklearn.linear_model import LogisticRegression
  31. from sklearn.datasets import load_digits, load_breast_cancer
  32. from sklearn.preprocessing import StandardScaler
  33. data = load_breast_cancer()
  34. X, y = data.data, data.target
  35. scaler = StandardScaler()
  36. X_scaled = scaler.fit_transform(X)
  37. pca = PCA(n_components=10)
  38. X_pca = pca.fit_transform(X_scaled)
  39. models = {
  40.     "Logistic Regression (Original)": LogisticRegression(),
  41.     "Logistic Regression (Reduced)": LogisticRegression(),
  42.     "KNN (Original)": KNeighborsClassifier(n_neighbors=5),
  43.     "KNN (Reduced)": KNeighborsClassifier(n_neighbors=5)
  44. }
  45. for name, model in models.items():
  46.     X_data = X_scaled if "Original" in name else X_pca
  47.     scores = cross_val_score(model, X_data, y, cv=5, scoring='accuracy')
  48.     print(f"{name}: Mean Accuracy = {scores.mean():.4f}")
Tags: exp 7
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement