Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # pip install curl_cffi
- from curl_cffi import requests
- def extract_lensai(text):
- # Headers extracted from the original curl command
- headers = {
- "accept": "application/json, text/plain, */*",
- "accept-encoding": "gzip, deflate, br, zstd",
- "accept-language": "en-US,en;q=0.9,mr;q=0.8",
- "cache-control": "no-cache",
- "content-type": "application/json",
- "cookie": "search_consent=true; facial_search_consent=true",
- "origin": "https://lenso.ai",
- "pragma": "no-cache",
- "referer": "https://lenso.ai/en/search-by-text?desc=football&type=relatedText&page=1",
- "sec-ch-ua": '"Not A(Brand";v="8", "Chromium";v="132", "Google Chrome";v="132"',
- "sec-ch-ua-mobile": "?0",
- "sec-ch-ua-platform": '"Windows"',
- "sec-fetch-dest": "empty",
- "sec-fetch-mode": "cors",
- "sec-fetch-site": "same-origin",
- "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/132.0.0.0 Safari/537.36",
- }
- payload = {
- "desc": f"{text}",
- "type": "relatedText",
- "page": 1
- }
- api_url = "https://lenso.ai/api/search/text"
- cont = requests.post(api_url, impersonate='chrome', headers = headers, json = payload)
- return cont.text
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement