Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- > inla.pardiso.check()
- GitId: 39a87469400fa169507c508366eca6ae7588cfdf - Wed Jun 19 21:58:47 2024 +0900
- Error:24 Reason: License file for PARDISO: Not found
- Line:649 Function: GMRFLib_pardiso_check_install
- [1] ""
- [2] ""
- [3] "*************************************************************************** "
- [4] "CONTAINS Runtime Modules of Parallel Sparse Linear Solver PARDISO Vers. 8.2"
- [5] "Copyright Panua Technologies, Switzerland [2022-2023], All Rights Reserved."
- [6] "No license file found. Please see "
- [7] " https://www.panua.ch/products/pardiso "
- [8] "where to place the license file panua.lic "
- [9] "*************************************************************************** "
- [10] "FAILURE: PARDISO IS NOT INSTALLED OR NOT WORKING"
- > n = 100; a = 1; b = 1; tau = 100
- > z = rnorm(n)
- > eta = a + b*z
- > scale = exp(rnorm(n))
- > prec = scale*tau
- > y = rnorm(n, mean = eta, sd = 1/sqrt(prec))
- > data = list(y=y, z=z)
- > formula = y ~ 1+z
- > result = inla(formula, family = "gaussian", data = data,
- + verbose = TRUE)
- ***************************************************************************
- CONTAINS Runtime Modules of Parallel Sparse Linear Solver PARDISO Vers. 8.2
- Copyright Panua Technologies, Switzerland [2022-2023], All Rights Reserved.
- No license file found. Please see
- https://www.panua.ch/products/pardiso
- where to place the license file panua.lic
- ***************************************************************************
- Read ntt 16 1 with max.threads 16
- Found num.threads = 16:1 max_threads = 16
- 39a87469400fa169507c508366eca6ae7588cfdf - Wed Jun 19 21:58:47 2024 +0900
- Report bugs to <help@r-inla.org>
- Set reordering to id=[0] and name=[default]
- Process file[/tmp/RtmpfHspX1/file5aea3a30ac8b/Model.ini] threads[16] max.threads[16] blas_threads[1] nested[16:1]
- inla_build...
- number of sections=[10]
- parse section=[0] name=[INLA.libR] type=[LIBR]
- inla_parse_libR...
- section[INLA.libR]
- R_HOME=[/usr/local/lib64/R]
- parse section=[7] name=[INLA.Expert] type=[EXPERT]
- inla_parse_expert...
- section[INLA.Expert]
- disable.gaussian.check=[0]
- Measure dot.product.gain=[No]
- cpo.manual=[0]
- jp.file=[(null)]
- jp.model=[(null)]
- parse section=[1] name=[INLA.Model] type=[PROBLEM]
- inla_parse_problem...
- name=[INLA.Model]
- R-INLA version = [24.06.19]
- R-INLA build date = [19893]
- Build tag = [devel]
- System memory = [31.0Gb]
- Cores = (Physical= 16, Logical= 16)
- 'char' is signed
- BUFSIZ is 8192
- openmp.strategy=[default]
- pardiso-library installed and working? = [no]
- smtp = [taucs]
- strategy = [default]
- store results in directory=[/tmp/RtmpfHspX1/file5aea3a30ac8b/results.files]
- output:
- gcpo=[0]
- num.level.sets=[-1]
- size.max=[32]
- strategy=[Posterior]
- correct.hyperpar=[1]
- epsilon=[0.005]
- prior.diagonal=[0.0001]
- keep=[]
- remove.fixed=[1]
- remove=[]
- cpo=[0]
- po=[0]
- dic=[0]
- kld=[1]
- mlik=[1]
- q=[0]
- graph=[0]
- hyperparameters=[1]
- config=[0]
- config.lite=[0]
- likelihood.info=[0]
- internal.opt=[1]
- save.memory=[0]
- summary=[1]
- return.marginals=[1]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- parse section=[3] name=[Predictor] type=[PREDICTOR]
- inla_parse_predictor ...
- section=[Predictor]
- dir=[predictor]
- PRIOR->name=[loggamma]
- hyperid=[53001|Predictor]
- PRIOR->from_theta=[function (x) <<NEWLINE>>exp(x)]
- PRIOR->to_theta = [function (x) <<NEWLINE>>log(x)]
- PRIOR->PARAMETERS=[1, 1e-05]
- initialise log_precision[13.8155]
- fixed=[1]
- user.scale=[1]
- n=[100]
- m=[0]
- ndata=[100]
- compute=[1]
- read offsets from file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea25f30ec7]
- read n=[200] entries from file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea25f30ec7]
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea25f30ec7] 0/100 (idx,y) = (0, 0)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea25f30ec7] 1/100 (idx,y) = (1, 0)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea25f30ec7] 2/100 (idx,y) = (2, 0)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea25f30ec7] 3/100 (idx,y) = (3, 0)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea25f30ec7] 4/100 (idx,y) = (4, 0)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea25f30ec7] 5/100 (idx,y) = (5, 0)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea25f30ec7] 6/100 (idx,y) = (6, 0)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea25f30ec7] 7/100 (idx,y) = (7, 0)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea25f30ec7] 8/100 (idx,y) = (8, 0)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea25f30ec7] 9/100 (idx,y) = (9, 0)
- A=[(null)]
- Aext=[(null)]
- AextPrecision=[1e+08]
- output:
- summary=[1]
- return.marginals=[1]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- parse section=[2] name=[INLA.Data1] type=[DATA]
- inla_parse_data [section 1]...
- tag=[INLA.Data1]
- family=[GAUSSIAN]
- likelihood=[GAUSSIAN]
- file->name=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea7d0e7323]
- file->name=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea8eb8681]
- file->name=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea7a811c00]
- file->name=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea510d6ec7]
- read n=[300] entries from file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea7d0e7323]
- 0/100 (idx,a,y,d) = (0, 1, 1.02769, 1)
- 1/100 (idx,a,y,d) = (1, 1, 1.09805, 1)
- 2/100 (idx,a,y,d) = (2, 1, 2.65996, 1)
- 3/100 (idx,a,y,d) = (3, 1, 0.704929, 1)
- 4/100 (idx,a,y,d) = (4, 1, -0.262727, 1)
- 5/100 (idx,a,y,d) = (5, 1, -0.526566, 1)
- 6/100 (idx,a,y,d) = (6, 1, 0.717622, 1)
- 7/100 (idx,a,y,d) = (7, 1, 1.11993, 1)
- 8/100 (idx,a,y,d) = (8, 1, -0.525064, 1)
- 9/100 (idx,a,y,d) = (9, 1, 2.46091, 1)
- likelihood.variant=[0]
- initialise log_precision[4]
- fixed0=[0]
- PRIOR0->name=[loggamma]
- hyperid=[65001|INLA.Data1]
- PRIOR0->from_theta=[function (x) <<NEWLINE>>exp(x)]
- PRIOR0->to_theta = [function (x) <<NEWLINE>>log(x)]
- PRIOR0->PARAMETERS0=[1, 5e-05]
- initialise log_precision offset[72.0873]
- fixed1=[1]
- PRIOR1->name=[none]
- hyperid=[65002|INLA.Data1]
- PRIOR1->from_theta=[function (x) <<NEWLINE>>exp(x)]
- PRIOR1->to_theta = [function (x) <<NEWLINE>>log(x)]
- PRIOR1->PARAMETERS1=[]
- Link model [IDENTITY]
- Link order [-1]
- Link variant [-1]
- Link a [1]
- Link ntheta [0]
- mix.use[0]
- section=[4] name=[(Intercept)] type=[LINEAR]
- inla_parse_linear...
- section[(Intercept)]
- dir=[fixed.effect00000001]
- file for covariates=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea9e6ef54]
- read n=[200] entries from file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea9e6ef54]
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea9e6ef54] 0/100 (idx,y) = (0, 1)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea9e6ef54] 1/100 (idx,y) = (1, 1)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea9e6ef54] 2/100 (idx,y) = (2, 1)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea9e6ef54] 3/100 (idx,y) = (3, 1)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea9e6ef54] 4/100 (idx,y) = (4, 1)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea9e6ef54] 5/100 (idx,y) = (5, 1)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea9e6ef54] 6/100 (idx,y) = (6, 1)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea9e6ef54] 7/100 (idx,y) = (7, 1)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea9e6ef54] 8/100 (idx,y) = (8, 1)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea9e6ef54] 9/100 (idx,y) = (9, 1)
- prior mean=[0]
- prior precision=[0]
- compute=[1]
- output:
- summary=[1]
- return.marginals=[1]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- section=[5] name=[z] type=[LINEAR]
- inla_parse_linear...
- section[z]
- dir=[fixed.effect00000002]
- file for covariates=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea160ab725]
- read n=[200] entries from file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea160ab725]
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea160ab725] 0/100 (idx,y) = (0, -0.0818444)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea160ab725] 1/100 (idx,y) = (1, -0.0779361)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea160ab725] 2/100 (idx,y) = (2, 1.60972)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea160ab725] 3/100 (idx,y) = (3, -0.172882)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea160ab725] 4/100 (idx,y) = (4, -1.23245)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea160ab725] 5/100 (idx,y) = (5, -1.52436)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea160ab725] 6/100 (idx,y) = (6, -0.276537)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea160ab725] 7/100 (idx,y) = (7, 0.147262)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea160ab725] 8/100 (idx,y) = (8, -1.37884)
- file=[/tmp/RtmpfHspX1/file5aea3a30ac8b/data.files/file5aea160ab725] 9/100 (idx,y) = (9, 1.51115)
- prior mean=[0]
- prior precision=[0.001]
- compute=[1]
- output:
- summary=[1]
- return.marginals=[1]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- parse section=[9] name=[INLA.pardiso] type=[PARDISO]
- inla_parse_pardiso...
- section[INLA.pardiso]
- verbose[0]
- debug[0]
- parallel.reordering[1]
- nrhs[-1]
- parse section=[8] name=[INLA.lp.scale] type=[LP.SCALE]
- inla_parse_lp_scale...
- section[INLA.lp.scale]
- Index table: number of entries[3], total length[102]
- tag start-index length
- Predictor 0 100
- (Intercept) 100 1
- z 101 1
- List of hyperparameters:
- theta[0] = [Log precision for the Gaussian observations]
- parse section=[6] name=[INLA.Parameters] type=[INLA]
- inla_parse_INLA...
- section[INLA.Parameters]
- lincomb.derived.correlation.matrix = [No]
- global_node.factor = 2.000
- global_node.degree = 2147483647
- reordering = -1
- constr.marginal.diagonal = 1.49e-08
- Contents of ai_param 0x5eb137ca8480
- Optimiser: DEFAULT METHOD
- Option for GSL-BFGS2: tol = 0.1
- Option for GSL-BFGS2: step_size = 1
- Option for GSL-BFGS2: epsx = 0.001
- Option for GSL-BFGS2: epsf = 0.002
- Option for GSL-BFGS2: epsg = 0.005
- Restart: 0
- Optimise: try to be smart: Yes
- Optimise: use directions: Yes
- Mode restart: Yes
- Mode fixed: No
- Mode use_mode: No
- parallel linesearch [0]
- Gaussian approximation:
- tolerance_func = 0.002
- tolerance_step = 5e-06
- optpar_fp = 0
- optpar_nr_step_factor = -0.1
- Gaussian data: Yes
- Strategy: Use a mean-skew corrected Gaussian by fitting a Skew-Normal
- Fast mode: On
- Use linear approximation to log(|Q +c|)? Yes
- Method: Compute the derivative exact
- Parameters for improved approximations
- Number of points evaluate: 9
- Step length to compute derivatives numerically: 0.0001
- Stencil to compute derivatives numerically: 5
- Cutoff value to construct local neigborhood: 0.0001
- Log calculations: On
- Log calculated marginal for the hyperparameters: On
- Integration strategy: Automatic (GRID for dim(theta)=1 and 2 and otherwise CCD)
- f0 (CCD only): 1.100
- dz (GRID only): 0.750
- Adjust weights (GRID only): On
- Difference in log-density limit (GRID only): 6.000
- Skip configurations with (presumed) small density (GRID only): On
- Gradient is computed using Central difference with step-length 0.005000
- Hessian is computed using Central difference with step-length 0.070711
- Hessian matrix is forced to be a diagonal matrix? [No]
- Compute effective number of parameters? [Yes]
- Perform a Monte Carlo error-test? [No]
- Interpolator [Auto]
- CPO required diff in log-density [3]
- Stupid search mode:
- Status [On]
- Max iter [1000]
- Factor [1.05]
- Numerical integration of hyperparameters:
- Maximum number of function evaluations [100000]
- Relative error ....................... [1e-05]
- Absolute error ....................... [1e-06]
- To stabilise the numerical optimisation:
- Minimum value of the -Hessian [-inf]
- Strategy for the linear term [Keep]
- CPO manual calculation[No]
- VB correction is [Enabled]
- strategy = [mean]
- verbose = [Yes]
- f_enable_limit_mean = [30]
- f_enable_limit_var = [25]
- f_enable_limit_mean_max = [1024]
- f_enable_limit_variance_max = [768]
- iter_max = [25]
- emergency = [25.00]
- hessian_update = [2]
- hessian_strategy = [full]
- Misc options:
- Hessian correct skewness only [1]
- inla_build: check for unused entries in[/tmp/RtmpfHspX1/file5aea3a30ac8b/Model.ini]
- inla_INLA_preopt_experimental...
- Strategy = [DEFAULT]
- Mode....................... [Compact]
- Setup...................... [0.01s]
- Sparse-matrix library...... [taucs]
- sort L..................... [no]
- OpenMP strategy............ [small]
- num.threads................ [16:1]
- blas.num.threads........... [1]
- Density-strategy........... [High]
- Size of graph.............. [2]
- Number of constraints...... [0]
- Optimizing sort2_id........ [309]
- Optimizing sort2_dd........ [381]
- Optimizing Qx-strategy..... serial[0.354] parallel [0.646] choose[serial]
- Optimizing pred-strategy... plain [0.664] data-rich[0.336] choose[data-rich]
- Found optimal reordering=[metis] nnz(L)=[2] and use_global_nodes(user)=[no]
- List of hyperparameters:
- theta[0] = [Log precision for the Gaussian observations]
- Compute initial values...
- Iter[0] RMS(err) = 1.000, update with step-size = 1.094
- Iter[1] RMS(err) = 0.084, update with step-size = 0.936
- Iter[2] RMS(err) = 0.990, update with step-size = 1.043
- Initial values computed in 0.0001 seconds
- x[0] = 0.8545
- x[1] = 0.8502
- x[0] = 0.8545
- x[1] = 0.8502
- Optimise using DEFAULT METHOD
- Smart optimise part I: estimate gradient using forward differences
- Input Error: Incorrect nseps.
- Input Error: Incorrect nseps.
- inla.mkl: smtp-taucs.c:470: taucs_ccs_metis5: Assertion `0 == 1' failed.
- inla.mkl: smtp-taucs.c:470: taucs_ccs_metis5: Assertion `0 == 1' failed.
- *** inla.core.safe: The inla program failed, but will rerun in case better initial values may help. try=1/1
- ***************************************************************************
- CONTAINS Runtime Modules of Parallel Sparse Linear Solver PARDISO Vers. 8.2
- Copyright Panua Technologies, Switzerland [2022-2023], All Rights Reserved.
- No license file found. Please see
- https://www.panua.ch/products/pardiso
- where to place the license file panua.lic
- ***************************************************************************
- Read ntt 16 1 with max.threads 16
- Found num.threads = 16:1 max_threads = 16
- 39a87469400fa169507c508366eca6ae7588cfdf - Wed Jun 19 21:58:47 2024 +0900
- Report bugs to <help@r-inla.org>
- Set reordering to id=[0] and name=[default]
- Process file[/tmp/RtmpfHspX1/file5aea5c5a224d/Model.ini] threads[16] max.threads[16] blas_threads[1] nested[16:1]
- inla_build...
- number of sections=[10]
- parse section=[0] name=[INLA.libR] type=[LIBR]
- inla_parse_libR...
- section[INLA.libR]
- R_HOME=[/usr/local/lib64/R]
- parse section=[7] name=[INLA.Expert] type=[EXPERT]
- inla_parse_expert...
- section[INLA.Expert]
- disable.gaussian.check=[0]
- Measure dot.product.gain=[No]
- cpo.manual=[0]
- jp.file=[(null)]
- jp.model=[(null)]
- parse section=[1] name=[INLA.Model] type=[PROBLEM]
- inla_parse_problem...
- name=[INLA.Model]
- R-INLA version = [24.06.19]
- R-INLA build date = [19893]
- Build tag = [devel]
- System memory = [31.0Gb]
- Cores = (Physical= 16, Logical= 16)
- 'char' is signed
- BUFSIZ is 8192
- openmp.strategy=[default]
- pardiso-library installed and working? = [no]
- smtp = [taucs]
- strategy = [default]
- store results in directory=[/tmp/RtmpfHspX1/file5aea5c5a224d/results.files]
- output:
- gcpo=[0]
- num.level.sets=[-1]
- size.max=[32]
- strategy=[Posterior]
- correct.hyperpar=[1]
- epsilon=[0.005]
- prior.diagonal=[0.0001]
- keep=[]
- remove.fixed=[1]
- remove=[]
- cpo=[0]
- po=[0]
- dic=[0]
- kld=[1]
- mlik=[1]
- q=[0]
- graph=[0]
- hyperparameters=[1]
- config=[0]
- config.lite=[0]
- likelihood.info=[0]
- internal.opt=[1]
- save.memory=[0]
- summary=[1]
- return.marginals=[0]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- parse section=[3] name=[Predictor] type=[PREDICTOR]
- inla_parse_predictor ...
- section=[Predictor]
- dir=[predictor]
- PRIOR->name=[loggamma]
- hyperid=[53001|Predictor]
- PRIOR->from_theta=[function (x) <<NEWLINE>>exp(x)]
- PRIOR->to_theta = [function (x) <<NEWLINE>>log(x)]
- PRIOR->PARAMETERS=[1, 1e-05]
- initialise log_precision[13.8155]
- fixed=[1]
- user.scale=[1]
- n=[100]
- m=[0]
- ndata=[100]
- compute=[0]
- read offsets from file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea73617279]
- read n=[200] entries from file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea73617279]
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea73617279] 0/100 (idx,y) = (0, 0)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea73617279] 1/100 (idx,y) = (1, 0)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea73617279] 2/100 (idx,y) = (2, 0)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea73617279] 3/100 (idx,y) = (3, 0)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea73617279] 4/100 (idx,y) = (4, 0)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea73617279] 5/100 (idx,y) = (5, 0)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea73617279] 6/100 (idx,y) = (6, 0)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea73617279] 7/100 (idx,y) = (7, 0)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea73617279] 8/100 (idx,y) = (8, 0)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea73617279] 9/100 (idx,y) = (9, 0)
- A=[(null)]
- Aext=[(null)]
- AextPrecision=[1e+08]
- output:
- summary=[1]
- return.marginals=[0]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- parse section=[2] name=[INLA.Data1] type=[DATA]
- inla_parse_data [section 1]...
- tag=[INLA.Data1]
- family=[GAUSSIAN]
- likelihood=[GAUSSIAN]
- file->name=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea2396e0a2]
- file->name=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea1ec213c7]
- file->name=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea256fdc9b]
- file->name=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea7ed2958]
- read n=[300] entries from file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea2396e0a2]
- 0/100 (idx,a,y,d) = (0, 1, 1.02769, 1)
- 1/100 (idx,a,y,d) = (1, 1, 1.09805, 1)
- 2/100 (idx,a,y,d) = (2, 1, 2.65996, 1)
- 3/100 (idx,a,y,d) = (3, 1, 0.704929, 1)
- 4/100 (idx,a,y,d) = (4, 1, -0.262727, 1)
- 5/100 (idx,a,y,d) = (5, 1, -0.526566, 1)
- 6/100 (idx,a,y,d) = (6, 1, 0.717622, 1)
- 7/100 (idx,a,y,d) = (7, 1, 1.11993, 1)
- 8/100 (idx,a,y,d) = (8, 1, -0.525064, 1)
- 9/100 (idx,a,y,d) = (9, 1, 2.46091, 1)
- likelihood.variant=[0]
- initialise log_precision[4]
- fixed0=[0]
- PRIOR0->name=[loggamma]
- hyperid=[65001|INLA.Data1]
- PRIOR0->from_theta=[function (x) <<NEWLINE>>exp(x)]
- PRIOR0->to_theta = [function (x) <<NEWLINE>>log(x)]
- PRIOR0->PARAMETERS0=[1, 5e-05]
- initialise log_precision offset[72.0873]
- fixed1=[1]
- PRIOR1->name=[none]
- hyperid=[65002|INLA.Data1]
- PRIOR1->from_theta=[function (x) <<NEWLINE>>exp(x)]
- PRIOR1->to_theta = [function (x) <<NEWLINE>>log(x)]
- PRIOR1->PARAMETERS1=[]
- Link model [IDENTITY]
- Link order [-1]
- Link variant [-1]
- Link a [1]
- Link ntheta [0]
- mix.use[0]
- section=[4] name=[(Intercept)] type=[LINEAR]
- inla_parse_linear...
- section[(Intercept)]
- dir=[fixed.effect00000001]
- file for covariates=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea4cccb064]
- read n=[200] entries from file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea4cccb064]
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea4cccb064] 0/100 (idx,y) = (0, 1)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea4cccb064] 1/100 (idx,y) = (1, 1)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea4cccb064] 2/100 (idx,y) = (2, 1)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea4cccb064] 3/100 (idx,y) = (3, 1)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea4cccb064] 4/100 (idx,y) = (4, 1)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea4cccb064] 5/100 (idx,y) = (5, 1)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea4cccb064] 6/100 (idx,y) = (6, 1)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea4cccb064] 7/100 (idx,y) = (7, 1)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea4cccb064] 8/100 (idx,y) = (8, 1)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea4cccb064] 9/100 (idx,y) = (9, 1)
- prior mean=[0]
- prior precision=[0]
- compute=[1]
- output:
- summary=[1]
- return.marginals=[0]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- section=[5] name=[z] type=[LINEAR]
- inla_parse_linear...
- section[z]
- dir=[fixed.effect00000002]
- file for covariates=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea6b218aea]
- read n=[200] entries from file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea6b218aea]
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea6b218aea] 0/100 (idx,y) = (0, -0.0818444)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea6b218aea] 1/100 (idx,y) = (1, -0.0779361)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea6b218aea] 2/100 (idx,y) = (2, 1.60972)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea6b218aea] 3/100 (idx,y) = (3, -0.172882)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea6b218aea] 4/100 (idx,y) = (4, -1.23245)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea6b218aea] 5/100 (idx,y) = (5, -1.52436)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea6b218aea] 6/100 (idx,y) = (6, -0.276537)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea6b218aea] 7/100 (idx,y) = (7, 0.147262)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea6b218aea] 8/100 (idx,y) = (8, -1.37884)
- file=[/tmp/RtmpfHspX1/file5aea5c5a224d/data.files/file5aea6b218aea] 9/100 (idx,y) = (9, 1.51115)
- prior mean=[0]
- prior precision=[0.001]
- compute=[1]
- output:
- summary=[1]
- return.marginals=[0]
- return.marginals.predictor=[0]
- nquantiles=[3] [ 0.025 0.5 0.975 ]
- ncdf=[0] [ ]
- parse section=[9] name=[INLA.pardiso] type=[PARDISO]
- inla_parse_pardiso...
- section[INLA.pardiso]
- verbose[0]
- debug[0]
- parallel.reordering[1]
- nrhs[-1]
- parse section=[8] name=[INLA.lp.scale] type=[LP.SCALE]
- inla_parse_lp_scale...
- section[INLA.lp.scale]
- Index table: number of entries[3], total length[102]
- tag start-index length
- Predictor 0 100
- (Intercept) 100 1
- z 101 1
- List of hyperparameters:
- theta[0] = [Log precision for the Gaussian observations]
- parse section=[6] name=[INLA.Parameters] type=[INLA]
- inla_parse_INLA...
- section[INLA.Parameters]
- lincomb.derived.correlation.matrix = [No]
- global_node.factor = 2.000
- global_node.degree = 2147483647
- reordering = -1
- constr.marginal.diagonal = 1.49e-08
- Contents of ai_param 0x5856c9e8d480
- Optimiser: DEFAULT METHOD
- Option for GSL-BFGS2: tol = 0.1
- Option for GSL-BFGS2: step_size = 1
- Option for GSL-BFGS2: epsx = 0.002
- Option for GSL-BFGS2: epsf = 0.004
- Option for GSL-BFGS2: epsg = 0.01
- Restart: 0
- Optimise: try to be smart: No
- Optimise: use directions: Yes
- Mode restart: Yes
- Mode fixed: No
- Mode use_mode: No
- parallel linesearch [0]
- Gaussian approximation:
- tolerance_func = 0.004
- tolerance_step = 1e-05
- optpar_fp = 0
- optpar_nr_step_factor = -0.1
- Gaussian data: Yes
- Strategy: Use the Gaussian approximation
- Fast mode: On
- Use linear approximation to log(|Q +c|)? Yes
- Method: Compute the derivative exact
- Parameters for improved approximations
- Number of points evaluate: 9
- Step length to compute derivatives numerically: 0.0001
- Stencil to compute derivatives numerically: 5
- Cutoff value to construct local neigborhood: 0.0001
- Log calculations: On
- Log calculated marginal for the hyperparameters: On
- Integration strategy: Use only the modal configuration (EMPIRICAL_BAYES)
- f0 (CCD only): 1.100
- dz (GRID only): 0.750
- Adjust weights (GRID only): On
- Difference in log-density limit (GRID only): 6.000
- Skip configurations with (presumed) small density (GRID only): On
- Gradient is computed using Central difference with step-length 0.005000
- Hessian is computed using Central difference with step-length 0.070711
- Hessian matrix is forced to be a diagonal matrix? [Yes]
- Compute effective number of parameters? [Yes]
- Perform a Monte Carlo error-test? [No]
- Interpolator [Auto]
- CPO required diff in log-density [3]
- Stupid search mode:
- Status [On]
- Max iter [1000]
- Factor [1.05]
- Numerical integration of hyperparameters:
- Maximum number of function evaluations [100000]
- Relative error ....................... [1e-05]
- Absolute error ....................... [1e-06]
- To stabilise the numerical optimisation:
- Minimum value of the -Hessian [inf]
- Strategy for the linear term [Keep]
- CPO manual calculation[No]
- VB-correction is [Disabled]
- Misc options:
- Hessian correct skewness only [1]
- inla_build: check for unused entries in[/tmp/RtmpfHspX1/file5aea5c5a224d/Model.ini]
- inla_INLA_preopt_experimental...
- Strategy = [DEFAULT]
- Mode....................... [Compact]
- Setup...................... [0.00s]
- Sparse-matrix library...... [taucs]
- sort L..................... [no]
- OpenMP strategy............ [small]
- num.threads................ [16:1]
- blas.num.threads........... [1]
- Density-strategy........... [High]
- Size of graph.............. [2]
- Number of constraints...... [0]
- Optimizing sort2_id........ [301]
- Optimizing sort2_dd........ [381]
- Optimizing Qx-strategy..... serial[0.284] parallel [0.716] choose[serial]
- Optimizing pred-strategy... plain [0.664] data-rich[0.336] choose[data-rich]
- Found optimal reordering=[metis] nnz(L)=[2] and use_global_nodes(user)=[no]
- List of hyperparameters:
- theta[0] = [Log precision for the Gaussian observations]
- Compute initial values...
- Iter[0] RMS(err) = 1.000, update with step-size = 1.094
- Iter[1] RMS(err) = 0.084, update with step-size = 0.936
- Iter[2] RMS(err) = 0.990, update with step-size = 1.043
- Initial values computed in 0.0003 seconds
- x[0] = 0.8545
- x[1] = 0.8502
- x[0] = 0.8545
- x[1] = 0.8502
- Optimise using DEFAULT METHOD
- Input Error: Incorrect nseps.
- Input Error: Incorrect nseps.
- inla.mkl: smtp-taucs.c:470: taucs_ccs_metis5: Assertion `0 == 1' failed.
- Error in inla.core.safe(formula = formula, family = family, contrasts = contrasts, :
- The inla-program exited with an error. Unless you interupted it yourself, please rerun with verbose=TRUE and check the output carefully.
- If this does not help, please contact the developers at <[email protected]>.
- The inla program failed and the maximum number of tries has been reached.
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement