Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- %% GAUSS elimination
- A = input("Enter matrix") ;
- B = input("Enter source vector");
- N = length(B);
- X = zeros(N,1);
- Aug = [A B];
- for j = 1:N-1
- for i = j+1:N
- m = Aug(i,j)/Aug(j,j);
- Aug(i,:) = Aug(i,:) - m*Aug(j,:);
- end
- end
- Aug
- X(N) = Aug(N, N+1)/Aug(N,N) ;
- for k = N-1:-1:1
- X(k) = (Aug(k , N+1) - Aug(k, k+1:N)*X(k+1:N))/ Aug(k,k);
- end
- X
- %% GAUSS SEIDEL
- A = input("Enter matrix") ;
- B = input("Enter source vector");
- N = length(B);
- X = zeros(N,1);
- n = 10 ;
- Y = zeros(N,1);
- P = input('initial giess vector ');
- e = 0.0001;
- for j = 1:n
- for i = 1:N
- X(i) = (B(i)/A(i,i)) - (A(i, [1:i-1, i+1:N]) * P([1:i-1, i+1:N])) / A(i,i);
- P(i) = X(i);
- end
- if abs(Y-X)<e
- break
- end
- Y=X;
- end
- X
- %% POWER METHOD
- A = input("Enter matrix") ;
- v = input("Enter guess");
- n = 30 ;
- e = 0.001 ;
- M = 0 ;
- vO = v ;
- for j = 1 :n
- v = A*vO ;
- M = max(v);
- v = v/M ;
- if abs(v-vO)<e
- break
- end
- vO = v ;
- end
- B
- %% NEWTON
- clc
- clear all
- f = @(x) 2^x - 5*x + 2 ;
- df = @(x) log(2)*(2^x) - 5 ;
- e = 0.00000000000001 ;
- xO = 0 ;
- n = 10 ;
- for i = 1:n
- x1 = xO - f(xO)/df(xO);
- if abs(x1-xO) < e
- break ;
- end
- xO = x1 ;
- disp(xO)
- end
- %% SECANT
- f = @(x) x - 5*x^2 + 2 ;
- e =0.000000000000000000001 ;
- x0 = 0 ;
- x1 = 1 ;
- x2 = 0 ;
- n = 10 ;
- for i = 1:n
- x2 = (x0*f(x1) - x1*f(x0))/(f(x1) - f(x0));
- if abs(x2-x1)<e
- break
- end
- disp(x2)
- x1 = x2;
- x0 = x1;
- end
- %% FIXED POINT
- f = @(x) 2^x -5*x + 2 ;
- g = @(x) (2^x + 2 )/5 ;
- e = 0.00001 ;
- xO = 0 ;
- n = 10 ;
- x1 = 0 ;
- for i = 1:n
- x1 = g(xO);
- if abs(xO-x1)<e
- disp(x1)
- break
- end
- xO = x1 ;
- end
- %%BISECTION
- clc
- clear ALL
- f = @(x) 2^x - 5*x + 2 ;
- a = 0 ;
- b =1 ;
- n = 30 ;
- e =0.0001 ;
- c = 0 ;
- if f(a)*f(b)<0
- for i=1:n
- c = (a+b)/2 ;
- if abs(c-b) < e || abs(c-a) <e
- disp(i)
- break;
- end
- if f(a)*f(c)<0
- b = c ;
- elseif f(b)*f(c)<0
- a = c ;
- end
- end
- else
- disp('no') ;
- end
- disp(c)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement