Advertisement
GamerBhai02

DS Exp 8

May 7th, 2025 (edited)
71
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 2.65 KB | Source Code | 0 0
  1. from numpy import isnan
  2. from pandas import read_csv
  3. from sklearn.impute import SimpleImputer
  4. url = "https://raw.githubusercontent.com/jbrownlee/Datasets/refs/heads/master/horse-colic.csv"
  5. df = read_csv(url, header=None, na_values='?')
  6. data = df.values
  7. for i in range(df.shape[1]):
  8.     n_miss = df[[i]].isnull().sum()
  9.     perc = n_miss / df.shape[0] * 100
  10.     print('> %d, Missing: %d (%.1f%%)' % (i, n_miss, perc))
  11. imputer = SimpleImputer(strategy='mean')
  12. imputer.fit(data)
  13. Xtrans = imputer.transform(data)
  14. print('Missing: %d' % sum(isnan(Xtrans).flatten()))
  15.  
  16. from numpy import isnan
  17. from pandas import read_csv
  18. from sklearn.experimental import enable_iterative_imputer
  19. from sklearn.impute import IterativeImputer
  20. url = "https://raw.githubusercontent.com/jbrownlee/Datasets/refs/heads/master/horse-colic.csv"
  21. df = read_csv(url, header=None, na_values='?')
  22. data = df.values
  23. for i in range(df.shape[1]):
  24.     n_miss = df[[i]].isnull().sum()
  25.     perc = n_miss / df.shape[0] * 100
  26.     print('> %d, Missing: %d (%.1f%%)' % (i, n_miss, perc))
  27. imputer = IterativeImputer()
  28. imputer.fit(data)
  29. Xtrans = imputer.transform(data)
  30. print('Missing: %d' % sum(isnan(Xtrans).flatten()))
  31.  
  32. from numpy import isnan
  33. from pandas import read_csv
  34. from sklearn.impute import KNNImputer
  35. url = "https://raw.githubusercontent.com/jbrownlee/Datasets/refs/heads/master/horse-colic.csv"
  36. df = read_csv(url, header=None, na_values='?')
  37. data = df.values
  38. for i in range(df.shape[1]):
  39.     n_miss = df[[i]].isnull().sum()
  40.     perc = n_miss / df.shape[0] * 100
  41.     print('> %d, Missing: %d (%.1f%%)' % (i, n_miss, perc))
  42. imputer = KNNImputer()
  43. imputer.fit(data)
  44. Xtrans = imputer.transform(data)
  45. print('Missing: %d' % sum(isnan(Xtrans).flatten()))
  46.  
  47.  
  48. #ASSIGNMENT 8
  49. from numpy import isnan
  50. from pandas import read_csv
  51. from sklearn.experimental import enable_iterative_imputer
  52. from sklearn.impute import SimpleImputer, IterativeImputer, KNNImputer
  53. url = "https://raw.githubusercontent.com/jbrownlee/Datasets/refs/heads/master/pima-indians-diabetes.data.csv"
  54. df = read_csv(url, header=None, na_values='?')
  55. data = df.values
  56. for i in range(df.shape[1]):
  57.     n_miss = df[[i]].isnull().sum()
  58.     perc = n_miss / df.shape[0] * 100
  59.     print('> %d, Missing: %d (%.1f%%)' % (i, n_miss, perc))
  60.  
  61. imputer = SimpleImputer(strategy='mean')
  62. imputer.fit(data)
  63. Xtrans = imputer.transform(data)
  64. print('Missing: %d' % sum(isnan(Xtrans).flatten()))
  65.  
  66. imputer = IterativeImputer()
  67. imputer.fit(data)
  68. Xtrans = imputer.transform(data)
  69. print('Missing: %d' % sum(isnan(Xtrans).flatten()))
  70.  
  71. imputer = KNNImputer()
  72. imputer.fit(data)
  73. Xtrans = imputer.transform(data)
  74. print('Missing: %d' % sum(isnan(Xtrans).flatten()))
Tags: Exp 8
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement