Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- // - if else
- x<-as.integer(readline(“Enter first number:”))
- Enter first number:10
- y<-as.integer(readline(“Enter second number:”))
- Enter second number:20
- z<-as.integer(readline(“Enter third number:”))
- Enter third number:30
- if (x > y && x > z) {
- print(paste("The greatest number is:", x))
- } else if (y > z) {
- print(paste("The greatest number is:", y))
- } else {
- print(paste("The greatest number is:", z))
- }
- // - switch
- month <- as.integer(readline(“Enter month number:”))
- Enter month number:5
- season <- switch(month,
- "Winter","Spring","Spring","Summer","Summer"," Summer ","Summer",
- "Rainy","Rainy","Rainy","Winter","Winter")
- print(season)
- // looping
- // for loop
- n <- as.integer(readline(“Enter a number:”)
- Enter a number:5
- sum <- 0
- for(i in 1:n){
- sum=sum+i
- }
- print(sum)
- // while loop
- n <- as.integer(readline(“Enter a number:”)
- Enter a number:6
- sum <- 0
- i <- 1
- while(i<=n){
- sum=sum+i
- i=i+1
- }
- print(sum)
- // factorial
- num=readline("Enter a Number:")
- Enter a Number:10
- num=as.integer(num)
- factorial=1
- if(num<0)
- {
- print("Factorial does not exisit")
- } else if(num==0){
- print("Factorial of 0 is 1")
- } else{
- for(i in 1:num)
- {
- factorial=factorial*i
- }
- print(paste("Factorial of the Given Number:" ,factorial))
- }
- // factorial
- # take input from the user
- num = as.integer(readline(prompt="Enter a number: "))
- factorial = 1
- # check is the number is negative or possitive
- if(num < 0) {
- print("Not possible for negative numbers")
- } else if(num == 0) {
- print("The factorial of 0 is 1")
- } else {
- for(i in 1:num) {
- factorial = factorial * i
- }
- print(paste("The factorial of", num ,"is",factorial))
- }
- // prime number
- isprime <- function(n) {
- lim <- n/2
- prime <- T
- for( i in 2:lim) {
- if(n %% i == 0)
- prime <- FALSE
- }
- if(n==2) prime <- T
- if(prime) print(paste(n," is a Prime Number"))
- else print(paste(n," is a Composite Number"))
- }
- ------------------------------------------------------------
- #Implementation of Random Forest using Iris Dataset
- ------------------------------------------------------------
- library(readxl)
- iris<-read_excel("C:/Downloads/iris.xlsx")
- #Loadingdata
- data(iris)
- head(iris)
- tail(iris)
- #Structure
- str(iris)
- #Installingpackages
- install.packages("caTools")
- library(caTools)
- install.packages("randomForest")
- library(randomForest)
- install.packages("caret")
- library(caret)
- #Splittingdataintotrainingandtestingsets
- split<-caTools::sample.split(iris,SplitRatio=0.7)
- split
- train<-subset(iris,split=="TRUE")
- test<-subset(iris,split=="FALSE")
- #FittingRandomForesttothetraindataset
- control<-trainControl(method="repeatedcv",number=10,repeats=3)
- seed<-7
- metric<-"Accuracy"
- set.seed(seed)
- rf<-train(Species~.,data=iris,method="rf",metric=metric,tuneLength=15,
- trControl=control)
- print(rf)
- # Grid Search
- tunegrid <- expand.grid(.mtry=c(1:4))
- rf_gridsearch <- train(Species~., data=iris, method="rf", metric=metric,
- tuneGrid=tunegrid, trControl=control)
- print(rf_gridsearch)
- plot(rf_gridsearch)
- --------------------------------------
- // Titanic Survival Prediction using Naive Bayes Algorithm
- ---------------------------------------
- install.packages(c("dplyr", "caret", "e1071", "ggplot2"))
- library(dplyr)
- library(caret)
- library(e1071)
- library(ggplot2)
- titanic <- read.csv("titanic_data.csv") %>%
- select(survived, pclass, sex, sibsp, parch) %>%
- na.omit()
- titanic$survived <- factor(titanic$survived)
- titanic$pclass <- factor(titanic$pclass, levels = c(3, 2, 1))
- ggplot(titanic, aes(x = survived)) +
- geom_bar(width = 0.5, fill = "coral") +
- geom_text(stat = 'count', aes(label = stat(count)), vjust = -0.5) +
- theme_classic()
- train_test_split <- function(data, fraction = 0.8, train = TRUE) {
- total_rows <- nrow(data)
- train_rows <- fraction * total_rows
- sample <- sample.int(total_rows, train_rows)
- if (train) {
- return(data[sample, ])
- } else {
- return(data[-sample, ])
- }
- }
- train <- train_test_split(titanic)
- test <- train_test_split(titanic, train = FALSE)
- nb_model <- naiveBayes(survived ~., data = train)
- nb_predict <- predict(nb_model, test)
- table_mat <- table(nb_predict, test$survived)
- table_mat
- nb_accuracy <- sum(diag(table_mat)) / sum(table_mat)
- paste("The accuracy is : ", nb_accuracy)
- ------------------------------------------------------------
- #titanic survival
- ------------------------------------------------------------
- # Load necessary libraries
- library(dplyr)
- library(e1071)
- library(ggplot2)
- # Load the Titanic dataset
- titanic <- read.csv("C:\\Downloads\\titanic_data.csv")
- # Keep only the relevant columns
- titanic <- titanic %>%
- select(survived, pclass, sex, sibsp, parch) %>%
- na.omit()
- # Convert columns to factors
- titanic$survived <- factor(titanic$survived)
- titanic$pclass <- factor(titanic$pclass, levels = c(3, 2, 1))
- # Plot the survival distribution
- ggplot(titanic, aes(x = survived)) +
- geom_bar(width = 0.5, fill = "coral") +
- geom_text(stat = 'count', aes(label = stat(count)), vjust = -0.5) +
- theme_classic()
- # Build the Naive Bayes model
- nb_model <- e1071::naiveBayes(survived ~ ., data = titanic)
- # Make predictions on the test set
- nb_predict <- predict(nb_model, titanic)
- # Create a confusion matrix
- table_mat <- table(nb_predict, titanic$survived)
- table_mat
- # Calculate accuracy
- nb_accuracy <- sum(diag(table_mat)) / sum(table_mat)
- paste("The accuracy is:", nb_accuracy)
- -----------------------
- K Means Clustering
- -------------------------
- install.packages("factoextra")
- library(factoextra)
- mydata <- read.csv("D:/R programming/USArrests.csv")
- USdata <- scale(mydata[, -1])
- kmeans_results <- lapply(2:5, function(k) {
- kmeans(USdata, centers = k, nstart = 20)
- })
- cluster_assignments <- lapply(kmeans_results, function(result) result$cluster)
- lapply(kmeans_results, function(result) fviz_cluster(result, data = USdata))
- fviz_nbclust(USdata, FUN = kmeans, method = "silhouette")
- ------------------------------------------------------------
- #is_prime
- ------------------------------------------------------------
- function(n) {
- lim <- n/2
- prime <- TRUE
- for(i in 2:lim) {
- if(n %% i == 0) {
- prime <- FALSE
- break
- }
- }
- if(n == 2) prime <- TRUE
- if(prime) {
- print(paste(n, " is a Prime Number"))
- } else {
- print(paste(n, " is a Composite Number"))
- }
- }
- ------------------------------------------------------------
- #data_visualization
- ------------------------------------------------------------
- mydata<-read.csv("C:/Users/hp/Downloads/airquality.csv")
- str(mydata)
- # Horizontal Bar Plot for Ozone concentration in air
- barplot(airquality$Ozone,
- main = 'Ozone Concenteration in air',
- xlab = 'ozone levels', horiz = TRUE)
- # Vertical Bar Plot for Ozone concentration in air
- barplot(airquality$Ozone, main = 'Ozone Concenteration in air',
- xlab = 'ozone levels', col ='blue', horiz = FALSE)
- # Histogram for Maximum Daily Temperature
- data(airquality)
- hist(airquality$Temp, main ="La Guardia Airport's\
- Maximum Temperature(Daily)",
- xlab ="Temperature(Fahrenheit)",
- xlim = c(50, 125), col ="yellow",
- freq = TRUE)
- # Box plot for average wind speed
- data(airquality)
- boxplot(airquality$Wind, main = "Average wind speed\
- at La Guardia Airport",
- xlab = "Miles per hour", ylab = "Wind",
- col = "orange", border = "brown",
- horizontal = TRUE, notch = TRUE)
- # Multiple Box plots, each representing an Air Quality Parameter
- boxplot(airquality[, 0:4],
- main ='Box Plots for Air Quality Parameters')
- # Scatter plot for Ozone Concentration per month
- data(airquality)
- plot(airquality$Ozone, airquality$Month,
- main ="Scatterplot Example",
- xlab ="Ozone Concentration in parts per billion",
- ylab =" Month of observation ", pch = 19)
- # Set seed for reproducibility
- # set.seed(110)
- # Create example data
- data <- matrix(rnorm(50, 0, 5), nrow = 5, ncol = 5)
- # Column names
- colnames(data) <- paste0("col", 1:5)
- rownames(data) <- paste0("row", 1:5)
- # Draw a heatmap
- heatmap(data)
- #3D Graphs in R
- # Adding Titles and Labeling Axes to Plot
- cone <- function(x, y){
- sqrt(x ^ 2 + y ^ 2)
- }
- # prepare variables.
- x <- y <- seq(-1, 1, length = 30)
- z <- outer(x, y, cone)
- # plot the 3D surface
- # Adding Titles and Labeling Axes to Plot
- persp(x, y, z,
- main="Perspective Plot of a Cone",
- zlab = "Height",
- theta = 30, phi = 15,
- col = "orange", shade = 0.4)
- ---------------------------------------
- control and looping statements
- ----------------------------------------
- for (i in 1:5) {
- print(i)
- }
- i <- 1
- while (i <= 5) {
- print(i)
- i <- i + 1
- }
- x <- 10
- if (x > 5) {
- print("x is greater than 5")
- }
- x <- 5
- if (x < 0) {
- print("x is negative")
- } else if (x == 0) {
- print("x is zero")
- } else {
- print("x is positive")
- }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement