Advertisement
EurenikZ

Lokale KI-Objekterkennung aus Fotos

Jul 9th, 2025 (edited)
80
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.31 KB | None | 0 0
  1. # INSTALLATION PYTHON - ANFANG #
  2. # 1. https://www.python.org/downloads/windows/
  3. # 2. pip install opencv-python torch torchvision matplotlib ultralytics
  4. # INSTALLATION PYTHON - ENDE #
  5.  
  6. # EINSTELLUNGEN - ANFANG #
  7. # Suchbegriffe
  8. filter_keywords = ['car', 'street', 'tree']
  9.  
  10. # Fotordner bzw. Pfad
  11. image_dir = r'images'
  12.  
  13. # Ordnername für gefundene Treffer
  14. treffer_dir = os.path.join(image_dir, 'Treffer')
  15. # EINSTELLUNGEN - ENDE #
  16.  
  17. # START SCRIPT #
  18. import os
  19. import shutil
  20. from ultralytics import YOLO
  21.  
  22. # Ordner erstellen, falls nicht vorhanden
  23. os.makedirs(treffer_dir, exist_ok=True)
  24.  
  25. # Lade YOLOv8n-Modell
  26. model = YOLO('yolov8n.pt')
  27.  
  28. # Durchlaufe Bilder
  29. for filename in os.listdir(image_dir):
  30.     if not filename.lower().endswith(('.jpg', '.jpeg', '.png')):
  31.         continue
  32.  
  33.     image_path = os.path.join(image_dir, filename)
  34.     results = model(image_path)
  35.  
  36.     # Alle erkannten Labels
  37.     labels = [model.model.names[int(cls)] for cls in results[0].boxes.cls]
  38.     print(f'{filename}: erkannte Labels: {labels}')
  39.  
  40.     # Falls ein Filterbegriff vorkommt → verschieben
  41.     if any(keyword in labels for keyword in filter_keywords):
  42.         zielpfad = os.path.join(treffer_dir, filename)
  43.         print(f'✔ {filename} → {zielpfad} ({labels})')
  44.         shutil.move(image_path, zielpfad)
  45.     else:
  46.         print(f'✘ {filename} enthält keine Treffer.')
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement