Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- import pandas as pd
- import seaborn as sns
- import matplotlib.pyplot as plt
- from sklearn.model_selection import train_test_split
- from sklearn.linear_model import LinearRegression
- df = pd.read_csv(r"C:\Users\Abu Talha\Desktop\Housing Price.csv")
- print(df.head())
- X=df.iloc[:,:-1].values
- Y=df.iloc[:,4].values
- x_train,x_test,y_train,y_test=train_test_split(X,Y,train_size=0.7,test_size=0.3,random_state=0)
- model = LinearRegression()
- model.fit(x_train,y_train)
- y_pred = model.predict(x_test)
- dfp = pd.DataFrame({"Actual Price":y_test,"Predicted Price":y_pred})
- print(dfp)
- import numpy as np
- import pandas as pd
- import seaborn as sns
- from sklearn.model_selection import train_test_split
- from sklearn.ensemble import RandomForestClassifier
- df = sns.load_dataset('iris')
- print(df.head())
- X=df.iloc[:,:-1].values
- Y=df.iloc[:,4].values
- x_train,x_test,y_train,y_test=train_test_split(X,Y,train_size=0.7,test_size=0.3,random_state=0)
- model = RandomForestClassifier(n_estimators=50)
- model.fit(x_train,y_train)
- y_pred = model.predict(x_test)
- from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
- print(confusion_matrix(y_test,y_pred))
- print(accuracy_score(y_test,y_pred))
- print(classification_report(y_test,y_pred))
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement