Advertisement
GamerBhai02

12.

Jan 14th, 2025
29
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.25 KB | Source Code | 0 0
  1. import numpy as np
  2. import pandas as pd
  3. import seaborn as sns
  4. import matplotlib.pyplot as plt
  5. from sklearn.model_selection import train_test_split
  6. from sklearn.linear_model import LinearRegression
  7. df = pd.read_csv(r"C:\Users\Abu Talha\Desktop\Housing Price.csv")
  8. print(df.head())
  9. X=df.iloc[:,:-1].values
  10. Y=df.iloc[:,4].values
  11. x_train,x_test,y_train,y_test=train_test_split(X,Y,train_size=0.7,test_size=0.3,random_state=0)
  12. model = LinearRegression()
  13. model.fit(x_train,y_train)
  14. y_pred = model.predict(x_test)
  15. dfp = pd.DataFrame({"Actual Price":y_test,"Predicted Price":y_pred})
  16. print(dfp)
  17.  
  18. import numpy as np
  19. import pandas as pd
  20. import seaborn as sns
  21. from sklearn.model_selection import train_test_split
  22. from sklearn.ensemble import RandomForestClassifier
  23. df = sns.load_dataset('iris')
  24. print(df.head())
  25. X=df.iloc[:,:-1].values
  26. Y=df.iloc[:,4].values
  27. x_train,x_test,y_train,y_test=train_test_split(X,Y,train_size=0.7,test_size=0.3,random_state=0)
  28. model = RandomForestClassifier(n_estimators=50)
  29. model.fit(x_train,y_train)
  30. y_pred = model.predict(x_test)
  31. from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
  32. print(confusion_matrix(y_test,y_pred))
  33. print(accuracy_score(y_test,y_pred))
  34. print(classification_report(y_test,y_pred))
Tags: Last Program
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement