Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import pandas as pd
- import numpy as np
- import matplotlib.pyplot as plt
- import seaborn as sns
- from sklearn.datasets import load_iris
- from sklearn.model_selection import train_test_split
- from sklearn.linear_model import LogisticRegression
- from sklearn.metrics import accuracy_score, f1_score, confusion_matrix
- data = load_iris()
- X = pd.DataFrame(data.data, columns=data.feature_names)
- y = pd.Series(data.target)
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
- model = LogisticRegression(max_iter=200)
- model.fit(X_train, y_train)
- y_pred = model.predict(X_test)
- accuracy = accuracy_score(y_test, y_pred)
- f1 = f1_score(y_test, y_pred, average='weighted')
- conf_matrix = confusion_matrix(y_test, y_pred)
- print(f"Acurácia: {accuracy:.2f}")
- print(f"F1 Score: {f1:.2f}")
- print("Matriz de Confusão:\n", conf_matrix)
- plt.figure(figsize=(8, 6))
- sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
- xticklabels=data.target_names,
- yticklabels=data.target_names)
- plt.ylabel('Real')
- plt.xlabel('Previsto')
- plt.title('Matriz de Confusão')
- plt.show()
Advertisement
Comments
-
- Não é necessário os créditos caso você queira publicar ele.
Add Comment
Please, Sign In to add comment
Advertisement