Advertisement
dev017

Aprendizagem de Maquinas para qualquer sistema

Sep 22nd, 2024
68
0
Never
1
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.13 KB | Cybersecurity | 0 0
  1. import pandas as pd
  2. import numpy as np
  3. import matplotlib.pyplot as plt
  4. import seaborn as sns
  5. from sklearn.datasets import load_iris
  6. from sklearn.model_selection import train_test_split
  7. from sklearn.linear_model import LogisticRegression
  8. from sklearn.metrics import accuracy_score, f1_score, confusion_matrix
  9.  
  10. data = load_iris()
  11. X = pd.DataFrame(data.data, columns=data.feature_names)
  12. y = pd.Series(data.target)
  13.  
  14. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
  15.  
  16. model = LogisticRegression(max_iter=200)
  17.  
  18. model.fit(X_train, y_train)
  19.  
  20. y_pred = model.predict(X_test)
  21.  
  22. accuracy = accuracy_score(y_test, y_pred)
  23. f1 = f1_score(y_test, y_pred, average='weighted')
  24. conf_matrix = confusion_matrix(y_test, y_pred)
  25.  
  26. print(f"Acurácia: {accuracy:.2f}")
  27. print(f"F1 Score: {f1:.2f}")
  28. print("Matriz de Confusão:\n", conf_matrix)
  29.  
  30. plt.figure(figsize=(8, 6))
  31. sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
  32.             xticklabels=data.target_names,
  33.             yticklabels=data.target_names)
  34. plt.ylabel('Real')
  35. plt.xlabel('Previsto')
  36. plt.title('Matriz de Confusão')
  37. plt.show()
Advertisement
Comments
Add Comment
Please, Sign In to add comment
Advertisement